3.9.43 \(\int \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)} \, dx\) [843]

Optimal. Leaf size=155 \[ -\frac {i \sqrt {i a-b} \text {ArcTan}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {i \sqrt {i a+b} \tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d} \]

[Out]

-I*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a-b)^(1/2)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/
2)/d-I*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I*a+b)^(1/2)*cot(d*x+c)^(1/2)*tan(d*x+c
)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 155, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {4326, 3656, 924, 95, 211, 214} \begin {gather*} -\frac {i \sqrt {-b+i a} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \text {ArcTan}\left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {i \sqrt {b+i a} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

((-I)*Sqrt[I*a - b]*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqr
t[Tan[c + d*x]])/d - (I*Sqrt[I*a + b]*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqr
t[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 924

Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*((a_.) + (c_.)*(x_)^2)), x_Symbol] :> Int[ExpandIntegr
and[1/(Sqrt[d + e*x]*Sqrt[f + g*x]), (d + e*x)^(m + 1/2)/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x] &
& NeQ[c*d^2 + a*e^2, 0] && IGtQ[m + 1/2, 0]

Rule 3656

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Wit
h[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + b*ff*x)^m*((c + d*ff*x)^n/(1 + ff^2*x^2)), x]
, x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]

Rule 4326

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps

\begin {align*} \int \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)} \, dx &=\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\\ &=\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x}}{\sqrt {x} \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac {\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \left (\frac {i a-b}{2 (i-x) \sqrt {x} \sqrt {a+b x}}+\frac {i a+b}{2 \sqrt {x} (i+x) \sqrt {a+b x}}\right ) \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac {\left ((i a-b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{(i-x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac {\left ((i a+b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} (i+x) \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}\\ &=\frac {\left ((i a-b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{i-(a+i b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}+\frac {\left ((i a+b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{i-(-a+i b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}\\ &=-\frac {i \sqrt {i a-b} \tan ^{-1}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {i \sqrt {i a+b} \tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.16, size = 143, normalized size = 0.92 \begin {gather*} \frac {(-1)^{3/4} \left (\sqrt {-a+i b} \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )-\sqrt {a+i b} \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

((-1)^(3/4)*(Sqrt[-a + I*b]*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]] -
Sqrt[a + I*b]*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])*Sqrt[Cot[c + d*x
]]*Sqrt[Tan[c + d*x]])/d

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 38.51, size = 2597, normalized size = 16.75

method result size
default \(\text {Expression too large to display}\) \(2597\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/d*2^(1/2)*(cos(d*x+c)/sin(d*x+c))^(1/2)*((a*cos(d*x+c)+b*sin(d*x+c))/cos(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*si
n(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)*(((a^2+b^2)^(1/2)*sin(d*x+c)+b*si
n(d*x+c)+a*cos(d*x+c)-a)/(a^2+b^2)^(1/2)/sin(d*x+c))^(1/2)*(a*(-1+cos(d*x+c))/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))
^(1/2)*(I*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c)
)^(1/2),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2)
)*a*b^2-I*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c)
)^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))
*a*b^2-I*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))
^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*
a^3+I*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1
/2),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*a^
3-I*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2
),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*a*b*
(a^2+b^2)^(1/2)+I*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/si
n(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2)
)^(1/2))*a*b*(a^2+b^2)^(1/2)+2*EllipticF((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^
2)^(1/2))/sin(d*x+c))^(1/2),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*(a^2+b^2)^(1/2)*a^2+4*El
lipticF((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),1/2*2
^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*(a^2+b^2)^(1/2)*b^2-4*EllipticF((((a^2+b^2)^(1/2)*sin(d*x
+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2
+b^2)^(1/2))^(1/2))*a^2*b-4*EllipticF((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^
(1/2))/sin(d*x+c))^(1/2),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*b^3-EllipticPi((((a^2+b^2)^
(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2)^(1/2))/(I*a
+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*a^2*(a^2+b^2)^(1/2)-2*EllipticPi
((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),(-b+(a^2+b^2
)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*b^2*(a^2+b^2)^(1/2)
+2*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2)
,(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*a^2*b+
2*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),
(-b+(a^2+b^2)^(1/2))/(I*a+(a^2+b^2)^(1/2)-b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*b^3-Ell
ipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c))^(1/2),-(-b+
(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2))*a^2*(a^2+b^
2)^(1/2)-2*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1/2))/sin(d*x+c
))^(1/2),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^2)^(1/2))^(1/2
))*b^2*(a^2+b^2)^(1/2)+2*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1
/2))/sin(d*x+c))^(1/2),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^
2)^(1/2))^(1/2))*a^2*b+2*EllipticPi((((a^2+b^2)^(1/2)*sin(d*x+c)-b*sin(d*x+c)-a*cos(d*x+c)+a)/(-b+(a^2+b^2)^(1
/2))/sin(d*x+c))^(1/2),-(-b+(a^2+b^2)^(1/2))/(I*a-(a^2+b^2)^(1/2)+b),1/2*2^(1/2)*((-b+(a^2+b^2)^(1/2))/(a^2+b^
2)^(1/2))^(1/2))*b^3)*sin(d*x+c)^2/(-1+cos(d*x+c))/(a*cos(d*x+c)+b*sin(d*x+c))/(I*a+(a^2+b^2)^(1/2)-b)/(I*a-(a
^2+b^2)^(1/2)+b)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(d*x + c) + a)*sqrt(cot(d*x + c)), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a + b \tan {\left (c + d x \right )}} \sqrt {\cot {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(1/2)*(a+b*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(c + d*x))*sqrt(cot(c + d*x)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(si

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \sqrt {\mathrm {cot}\left (c+d\,x\right )}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^(1/2)*(a + b*tan(c + d*x))^(1/2),x)

[Out]

int(cot(c + d*x)^(1/2)*(a + b*tan(c + d*x))^(1/2), x)

________________________________________________________________________________________